Roles of Corneal Epithelial Ion Transport Mechanisms in Mediating Responses to Cytokines and Osmotic Stress

نویسندگان

  • Peter S. Reinach
  • José E. Capó-Aponte
  • Stefan Mergler
  • Kathryn S. Pokorny
چکیده

Normal vision depends, in part, on the combined refractive powers of the cornea and crystalline lens to permit adequate focusing of light onto the retina. Such refractive function requires that the cornea remain transparent, a requirement that is met provided that corneal hydration, i.e., deturgescence, is maintained within specific physiological limits. Maintenance of corneal deturgescence is reliant upon coupled ion and fluid transport activities within the epithelial and endothelial layers. Net ion transport activity offsets the natural tendency of the corneal stroma to imbibe fluid from the anterior chamber, thus keeping the cornea transparent (1–5). Although most of the ion transport activity involved in maintaining corneal deturgescence is contingent upon ion transport processes localized in the corneal endothelial layer, corneal epithelial ion transport activity plays a fine-tuning role in maintaining corneal deturgescence during exposure to environmental challenges (6) (Fig. 1). Only under maximally stimulated conditions is the epithelial-side fluid transport rate able to increase sufficiently, i.e., to approximately 25% of the endothelial-side fluid transport rate (7). This realization has prompted a host of studies concentrated on characterizing receptor-mediated regulation of corneal epithelial active ion transport.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The responses of L-gulonolactone oxidase and HKT2;1 genes in Aeluropus littoralis’ shoots under high concentration of sodium chloride

Salinity is one of the most important abiotic stresses that limit crop growth and production. Salt stress influences plants in two ways: by affecting ion toxicity and increasing osmotic stress. Ion homeostasis, the excretion of Na+ and using antioxidant systems are the major strategies of salt tolerance in plants. Na+ and K+ transporters with enzymes that are involved in detoxification of react...

متن کامل

Comparison of physiological and molecular responses of Melissa officinalis L. to osmotic stress imposed by drought and salinity with iso-osmotic potential in hydroponic culture

This study was performed to compare some physiological and molecular responses of lemon balm to osmotic stress imposed by drought and salinity stresses with equal osmotic potential in hydroponic culture. Growing lemon balm plants in hydroponic culture were treated with drought and salinity stress using polyethylene glycol 6000 and sodium chloride for 14 days. Then, seedlings were sampled to eva...

متن کامل

Responses of Almond Genotypes to Osmotic Stress Induced In Vitro

Drought is one of the major limitations to crop production worldwide. This study was conducted to evaluate the response of five almond genotypes and peach×almond hybrid GF to drought stress in vitro, and screening drought tolerance. Explants subjected to polyethylene glycol osmotic stress ( , , and . % WV) on the MS medium. Increasing PEG level in the medium significantly reduced fresh weight a...

متن کامل

Effects of drought on osmotic adjustment, antioxidant enzymes and pigments in wild Achillea tinctoria populations

Drought stress is one of the most important factors limiting the survival and growth of plants in the different habitats of Iran. Detailed knowledge about the ecophysiological responses of native plants to drought stress could contribute to the success of breeding and re-vegetation programs. Six wild populations of Anthemis tinctoria, were assigned to four drought treatments, i.e. well...

متن کامل

Effect of drought stress on MYB gene expression and osmotic regulator levels of five durum wheat genotypes (Triticum turgidum L.)

Plant growth is greatly influenced by environmental stresses including water deficit, salinity and extreme temperatures. Therefore, the identification of genes, especially regulatory ones whose expression enables plants to adapt to or to tolerate these abiotic stresses, is very essential. MYB proteins, a superfamily of transcription factors, play regulatory roles in developmental processes and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017